Abràmoff, Michael D., Philip T. Lavin, Michele Birch, Nilay Shah, and
James C. Folk. 2018. 
“Pivotal Trial of an Autonomous AI-Based
Diagnostic System for Detection of Diabetic Retinopathy in Primary Care
Offices.” Npj Digital Medicine 1 (1): 1–8. 
https://doi.org/10.1038/s41746-018-0040-6.
 
Arbabshirani, Mohammad R., Brandon K. Fornwalt, Gregory J. Mongelluzzo,
Jonathan D. Suever, Benjamin D. Geise, Aalpen A. Patel, and Gregory J.
Moore. 2018. 
“Advanced Machine Learning in Action: Identification
of Intracranial Hemorrhage on Computed Tomography Scans of the Head with
Clinical Workflow Integration.” Npj Digital Medicine 1:
1–7. 
https://doi.org/10.1038/s41746-017-0015-z.
 
Attia, Zachi I., Peter A. Noseworthy, Francisco Lopez-Jimenez, Samuel J.
Asirvatham, Abhishek J. Deshmukh, Bernard J. Gersh, Rickey E. Carter, et
al. 2019. 
“An Artificial Intelligence-Enabled ECG Algorithm for
the Identification of Patients with Atrial Fibrillation During Sinus
Rhythm: A Retrospective Analysis of Outcome Prediction.” The
Lancet 394 (10201): 861–67. 
https://doi.org/10.1016/S0140-6736(19)31721-0.
 
Barnett, G. Octo, James J. Cimino, Jon A. Hupp, and Edward P. Hoffer.
1987. 
“DXplain: An Evolving Diagnostic Decision-Support
System.” JAMA 258 (1): 67–74. 
https://doi.org/10.1001/jama.258.1.67.
 
Bates, David W., Gilad J. Kuperman, Samuel Wang, Tejal Gandhi, Anne
Kittler, Lynn Volk, Christiana Spurr, Ramin Khorasani, Milenko
Tanasijevic, and Blackford Middleton. 2003. 
“Ten Commandments for
Effective Clinical Decision Support: Making the Practice of
Evidence-Based Medicine a Reality.” Journal of the American
Medical Informatics Association 10 (6): 523–30. 
https://doi.org/10.1197/jamia.M1370.
 
Beam, Andrew L., Arjun K. Manrai, and Marzyeh Ghassemi. 2020.
“Challenges to the Reproducibility of Machine Learning Models in
Health Care.” JAMA 323 (4): 305–6. 
https://doi.org/10.1001/jama.2019.20866.
 
Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, et al. 2020. “Language
Models Are Few-Shot Learners.” Advances in Neural Information
Processing Systems 33: 1877–1901.
Campanella, Gabriele, Matthew G. Hanna, Luke Geneslaw, Allen Miraflor,
Vitor Werneck Krauss Silva, Klaus J. Busam, Edi Brogi, Victor E. Reuter,
David S. Klimstra, and Thomas J. Fuchs. 2019. 
“Clinical-Grade
Computational Pathology Using Weakly Supervised Deep Learning on Whole
Slide Images.” Nature Medicine 25 (8): 1301–9. 
https://doi.org/10.1038/s41591-019-0508-1.
 
Castro, E., J. S. Cardoso, and J. C. Pereira. 2020. 
“Validation of
Artificial Intelligence for Prostate MRI Interpretation: A Multi-Center
Study.” European Radiology 30: 6343–50. 
https://doi.org/10.1007/s00330-020-07035-2.
 
Char, Danton S., Nigam H. Shah, and David Magnus. 2018.
“Implementing Machine Learning in Health Care: Addressing Ethical
Challenges.” New England Journal of Medicine 378 (11):
981–83. 
https://doi.org/10.1056/NEJMp1714229.
 
Collins, Gary S., Karel G. M. Moons, Paula Dhiman, Richard D. Riley,
Andrew L. Beam, Ben Van Calster, Marzyeh Ghassemi, et al. 2024.
“TRIPOD+AI Statement: Updated Guidance for Reporting Clinical
Prediction Models That Use Regression or Machine Learning
Methods.” BMJ 385: e078378. 
https://doi.org/10.1136/bmj-2023-078378.
 
Daneshjou, Roxana, Kailas Vodrahalli, Roberto A. Novoa, Melissa Jenkins,
Weixin Liang, Veronica Rotemberg, Justin Ko, et al. 2022.
“Disparities in Dermatology AI Performance on a Diverse, Curated
Clinical Image Set.” Science Advances 8 (32): eabq6147.
https://doi.org/10.1126/sciadv.abq6147.
 
DeGrave, Alex J., Joseph D. Janizek, and Su-In Lee. 2021. 
“AI for
Radiographic COVID-19 Detection Selects Shortcuts over Signal.”
Nature Machine Intelligence 3: 610–19. 
https://doi.org/10.1038/s42256-021-00338-7.
 
Esteva, Andre, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M.
Swetter, Helen M. Blau, and Sebastian Thrun. 2017.
“Dermatologist-Level Classification of Skin Cancer with Deep
Neural Networks.” Nature 542 (7639): 115–18. 
https://doi.org/10.1038/nature21056.
 
Finlayson, Samuel G., John D. Bowers, Joichi Ito, Jonathan L. Zittrain,
Andrew L. Beam, and Isaac S. Kohane. 2019. 
“Adversarial Attacks on
Medical Machine Learning.” Science 363 (6433): 1287–89.
https://doi.org/10.1126/science.aaw4399.
 
Finlayson, Samuel G., Adarsh Subbaswamy, Karandeep Singh, John Bowers,
Annabel Kupke, Jonathan Zittrain, Isaac S. Kohane, and Suchi Saria.
2021. 
“The Clinician and Dataset Shift in Artificial
Intelligence.” New England Journal of Medicine 385 (3):
283–86. 
https://doi.org/10.1056/NEJMc2104626.
 
Fitzpatrick, Kathleen Kara, Alison Darcy, and Molly Vierhile. 2017.
“Delivering Cognitive Behavior Therapy to Young Adults with
Symptoms of Depression and Anxiety Using a Fully Automated
Conversational Agent (Woebot): A Randomized Controlled Trial.”
JMIR Mental Health 4 (2): e19. 
https://doi.org/10.2196/mental.7785.
 
Freeman, Kathleen, Jacqueline Dinnes, Naomi Chuchu, Yemisi Takwoingi,
Susan E. Bayliss, Rubeta N. Matin, Abha Jain, Fiona M. Walter, Hywel C.
Williams, and Jonathan J. Deeks. 2020. 
“Algorithm Based Smartphone
Apps to Assess Risk of Skin Cancer in Adults: Systematic Review of
Diagnostic Accuracy Studies.” BMJ 368. 
https://doi.org/10.1136/bmj.m127.
 
Ginsberg, Jeremy, Matthew H. Mohebbi, Rajan S. Patel, Lynnette Brammer,
Mark S. Smolinski, and Larry Brilliant. 2009. 
“Detecting Influenza
Epidemics Using Search Engine Query Data.” Nature 457
(7232): 1012–14. 
https://doi.org/10.1038/nature07634.
 
Gulshan, Varun, Lily Peng, Marc Coram, Martin C. Stumpe, Derek Wu,
Arunachalam Narayanaswamy, Subhashini Venugopalan, et al. 2016.
“Development and Validation of a Deep Learning Algorithm for
Detection of Diabetic Retinopathy in Retinal Fundus Photographs.”
JAMA 316 (22): 2402–10. 
https://doi.org/10.1001/jama.2016.17216.
 
Hashimoto, Daniel A., Guy Rosman, Daniela Rus, and Ozanan R. Meireles.
2018. 
“Artificial Intelligence in Surgery: Promises and
Perils.” Annals of Surgery 268 (1): 70–76. 
https://doi.org/10.1097/SLA.0000000000002693.
 
He, Jiang, Sally L. Baxter, Jie Xu, Jiming Xu, Xingtao Zhou, and Kang
Zhang. 2019. 
“The Practical Implementation of Artificial
Intelligence Technologies in Medicine.” Nature Medicine
25 (1): 30–36. 
https://doi.org/10.1038/s41591-018-0307-0.
 
Hwang, E. J., S. Park, K. N. Jin, J. I. Kim, S. Y. Choi, J. H. Lee, J.
M. Goo, et al. 2021. 
“Deep Learning for Chest Radiograph
Diagnosis: A Retrospective Comparison of Convolutional Neural
Networks.” Radiology 301 (2): 455–65. 
https://doi.org/10.1148/radiol.2021203115.
 
Isaac, Thomas, Jie Zheng, and Ashish Jha. 2012. 
“Overcoming
Barriers to Using Evidence-Based Medicine in Primary Care: The Role of
Technology.” JAMA 308 (18): 1883–84. 
https://doi.org/10.1001/jama.2012.13659.
 
Kansagara, Devan, Honora Englander, Amanda Salanitro, David Kagen,
Cecelia Theobald, Michele Freeman, and Sunil Kripalani. 2011.
“Risk Prediction Models for Hospital Readmission: A Systematic
Review.” JAMA 306 (15): 1688–98. 
https://doi.org/10.1001/jama.2011.1515.
 
Kelly, Christopher J., Alan Karthikesalingam, Mustafa Suleyman, Greg
Corrado, and Dominic King. 2019. 
“Key Challenges for Delivering
Clinical Impact with Artificial Intelligence.” BMC
Medicine 17 (1): 1–9. 
https://doi.org/10.1186/s12916-019-1426-2.
 
Kim, R. Y., C. Glick, and H. Kim. 2021. 
“Systematic Review of
Artificial Intelligence for Detecting Pulmonary Diseases on Chest
Radiographs.” Journal of Thoracic Disease 13 (12):
6861–70. 
https://doi.org/10.21037/jtd-21-1435.
 
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012.
“ImageNet Classification with Deep Convolutional Neural
Networks.” Advances in Neural Information Processing
Systems 25: 1097–1105. 
https://doi.org/10.1145/3065386.
 
Lang, K., S. Hofvind, A. Rodriguez-Ruiz, and I. Andersson. 2023.
“Impact of Artificial Intelligence-Based Detection System on the
Workload of Screening Mammography.” Radiology 307 (2):
e222097. 
https://doi.org/10.1148/radiol.222097.
 
Larson, D. B., H. Harvey, D. L. Rubin, N. Irani, J. R. Tse, and C. P.
Langlotz. 2022. 
“Implementation and Evaluation of AI-Supported
Chest Radiography Triage in the Emergency Department.”
Radiology: Artificial Intelligence 4 (5): e210283. 
https://doi.org/10.1148/ryai.210283.
 
Lazer, David, Ryan Kennedy, Gary King, and Alessandro Vespignani. 2014.
“The Parable of Google Flu: Traps in Big Data Analysis.”
Science 343 (6176): 1203–5. 
https://doi.org/10.1126/science.1248506.
 
Lehman, Constance D., Robert D. Wellman, Diana S. M. Buist, Karla
Kerlikowske, Anna N. A. Tosteson, and Diana L. Miglioretti. 2015.
“Diagnostic Accuracy of Digital Screening Mammography with and
Without Computer-Aided Detection.” JAMA Internal
Medicine 175 (11): 1828–37. 
https://doi.org/10.1001/jamainternmed.2015.5231.
 
Lindsay, Robert K., Bruce G. Buchanan, Edward A. Feigenbaum, and Joshua
Lederberg. 1993. 
“DENDRAL: A Case Study of the First Expert System
for Scientific Hypothesis Formation.” Artificial
Intelligence 61 (2): 209–61. 
https://doi.org/10.1016/0004-3702(93)90068-M.
 
Liu, Xiaoxuan, Samantha Cruz Rivera, David Moher, Melanie J. Calvert,
Alastair K. Denniston, Spirit-Ai, Consort-Ai Working Group, et al. 2020.
“Reporting Guideline for Clinical Trial Reports of Artificial
Intelligence in Healthcare: The CONSORT-AI Extension.”
BMJ 370. 
https://doi.org/10.1136/bmj.m3164.
 
Lotter, William, Abdul Rahman Diab, Bryan Haslam, Jiye G. Kim, Giorgia
Grisot, Eric Wu, Kevin Wu, et al. 2021. 
“Robust Breast Cancer
Detection in Mammography and Digital Breast Tomosynthesis Using an
Annotation-Efficient Deep Learning Approach.” Nature
Medicine 27: 244–49. 
https://doi.org/10.1038/s41591-020-01174-9.
 
McCarthy, John, Marvin L. Minsky, Nathaniel Rochester, and Claude E.
Shannon. 2006. 
“A Proposal for the Dartmouth Summer Research
Project on Artificial Intelligence, August 31, 1955.” AI
Magazine 27 (4): 12–14. 
https://doi.org/10.1609/aimag.v27i4.1904.
 
McKinney, S. M., M. Sieniek, and V. Godbole. 2020. 
“Artificial
Intelligence in Breast Cancer Diagnosis: A Systematic Review and
Meta-Analysis.” NPJ Digital Medicine 3: 1–7. 
https://doi.org/10.1038/s41746-020-0346-5.
 
McLellan, Andrew M., Gabriel M. Rodrigues, Chaklam Silpasuwanchai, Bijoy
K. Menon, Andrew M. Demchuk, Mayank Goyal, and Michael D. Hill. 2022.
“Reducing Time to Endovascular Reperfusion in Acute Ischemic
Stroke Through AI-Enabled Workflow: The DIRECT Study.”
Stroke 53 (8): 2656–63. 
https://doi.org/10.1161/STROKEAHA.121.038217.
 
Miller, Randolph A., Harry E. Pople, and Jack D. Myers. 1982.
“INTERNIST-1, an Experimental Computer-Based Diagnostic Consultant
for General Internal Medicine.” New England Journal of
Medicine 307 (8): 468–76. 
https://doi.org/10.1056/NEJM198208193070803.
 
Nagendran, Myura, Yang Chen, Christopher A. Lovejoy, Anthony C. Gordon,
Matthieu Komorowski, Hugh Harvey, Eric J. Topol, John P. A. Ioannidis,
Gary S. Collins, and Mahiben Maruthappu. 2020. 
“Artificial
Intelligence Versus Clinicians: Systematic Review of Design, Reporting
Standards, and Claims of Deep Learning Studies.” BMJ
368. 
https://doi.org/10.1136/bmj.m689.
 
Nagpal, Kunal, Davis Foote, Yun Liu, Po-Hsuan Cameron Chen, Ellery
Wulczyn, Fraser Tan, Niels Olson, et al. 2019. 
“Development and
Validation of a Deep Learning Algorithm for Improving Gleason Scoring of
Prostate Cancer.” Npj Digital Medicine 2 (1): 1–10. 
https://doi.org/10.1038/s41746-019-0112-2.
 
Obermeyer, Ziad, Brian Powers, Christine Vogeli, and Sendhil
Mullainathan. 2019. 
“Dissecting Racial Bias in an Algorithm Used
to Manage the Health of Populations.” Science 366
(6464): 447–53. 
https://doi.org/10.1126/science.aax2342.
 
Omboni, Stefano, Richard J. McManus, Hayden B. Bosworth, Lucy C.
Chappell, Beverly B. Green, Kazuomi Kario, Adam G. Logan, et al. 2020.
“Telemedicine and mHealth in the Management of Hypertension:
Technologies, Applications and Clinical Evidence.” High Blood
Pressure & Cardiovascular Prevention 27: 347–65. 
https://doi.org/10.1007/s40292-020-00396-1.
 
Pantanowitz, Liron, Gabriela M. Quiroga-Garza, Lisanne Bien, Ronen
Heled, Daphna Laifenfeld, Chaim Linhart, Judith Sandbank, et al. 2020.
“An Artificial Intelligence Algorithm for Prostate Cancer
Diagnosis in Whole Slide Images of Core Needle Biopsies: A Blinded
Clinical Validation and Deployment Study.” The Lancet Digital
Health 2 (8): e407–16. 
https://doi.org/10.1016/S2589-7500(20)30159-X.
 
Perez, Marco V., Kenneth W. Mahaffey, Haley Hedlin, John S. Rumsfeld,
Ariadna Garcia, Todd Ferris, Vidhya Balasubramanian, et al. 2019.
“Large-Scale Assessment of a Smartwatch to Identify Atrial
Fibrillation.” New England Journal of Medicine 381 (20):
1909–17. 
https://doi.org/10.1056/NEJMoa1901183.
 
Poplin, Ryan, Avinash V. Varadarajan, Katy Blumer, Yun Liu, Michael V.
McConnell, Greg S. Corrado, Lily Peng, and Dale R. Webster. 2018.
“Prediction of Cardiovascular Risk Factors from Retinal Fundus
Photographs via Deep Learning.” Nature Biomedical
Engineering 2: 158–64. 
https://doi.org/10.1038/s41551-018-0195-0.
 
Price, W. Nicholson, and I. Glenn Cohen. 2019. 
“Privacy in the Age
of Medical Big Data.” Nature Medicine 25 (1): 37–43. 
https://doi.org/10.1038/s41591-018-0272-7.
 
Rajkomar, Alvin, Jeffrey Dean, and Isaac Kohane. 2019. 
“Machine
Learning in Medicine.” New England Journal of Medicine
380 (14): 1347–58. 
https://doi.org/10.1056/NEJMra1814259.
 
Rajpurkar, Pranav, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel
Mehta, Tony Duan, Daisy Ding, et al. 2017. “CheXNet:
Radiologist-Level Pneumonia Detection on Chest x-Rays with Deep
Learning.” arXiv Preprint arXiv:1711.05225.
Rava, R. A., S. E. Seymour, M. E. LaQue, B. A. Peterson, K. V. Snyder,
M. Mokin, and M. Waqas. 2021. 
“A Systematic Review and
Meta-Analysis of AI in Detecting Intracranial Hemorrhage.”
Neurosurgical Focus 51 (5): E5. 
https://doi.org/10.3171/2021.8.FOCUS21363.
 
Reddy, Sandeep, Sonia Allan, Simon Coghlan, and Paul Cooper. 2020.
“A Governance Model for the Application of AI in Health
Care.” Journal of the American Medical Informatics
Association 27 (3): 491–97. 
https://doi.org/10.1093/jamia/ocz192.
 
Ross, Casey, and Ike Swetlitz. 2018. “Artificial Intelligence in
Healthcare: IBM Watson and Oncology.” STAT News.
Rudin, Cynthia. 2019. 
“Stop Explaining Black Box Machine Learning
Models for High Stakes Decisions and Use Interpretable Models
Instead.” Nature Machine Intelligence 1: 206–15. 
https://doi.org/10.1038/s42256-019-0048-x.
 
Schork, Nicholas J. 2019. 
“Artificial Intelligence and
Personalized Medicine.” Cancer Treatment and Research
178: 265–83. 
https://doi.org/10.1007/978-3-030-16391-4_11.
 
Semigran, Hannah L., Jeffrey A. Linder, Courtney Gidengil, and Ateev
Mehrotra. 2015. 
“Evaluation of Symptom Checkers for Self Diagnosis
and Triage: Audit Study.” BMJ 351: h3480. 
https://doi.org/10.1136/bmj.h3480.
 
Sendak, Mark P., William Ratliff, David Sarro, Elizabeth Alderton,
Joseph Futoma, Michael Gao, Marshall Nichols, et al. 2020.
“Real-World Integration of a Sepsis Deep Learning Technology into
Routine Clinical Care: Implementation Study.” JMIR Medical
Informatics 8 (7): e15182. 
https://doi.org/10.2196/15182.
 
Shortliffe, Edward H., Randall Davis, Scott G. Axline, Bruce G.
Buchanan, Cordell C. Green, and Stanley N. Cohen. 1975.
“Computer-Based Consultations in Clinical Therapeutics:
Explanation and Rule Acquisition Capabilities of the MYCIN
System.” Computers and Biomedical Research 8 (4):
303–20. 
https://doi.org/10.1016/0010-4809(75)90009-9.
 
Singhal, Karan, Shekoofeh Azizi, Tao Tu, S. Sara Mahdavi, Jason Wei,
Hyung Won Chung, Nathan Scales, et al. 2023. 
“Large Language
Models Encode Clinical Knowledge.” Nature 620 (7972):
172–80. 
https://doi.org/10.1038/s41586-023-06291-2.
 
Stone, E. G., S. C. Morton, M. E. Hulscher, M. A. Maglione, E. A. Roth,
J. M. Grimshaw, B. S. Mittman, L. V. Rubenstein, L. Z. Rubenstein, and
P. G. Shekelle. 2002. 
“Implementation of Computerized Decision
Support for Health Maintenance in Primary Care.” Journal of
the American Medical Informatics Association 9 (4): 395–407. 
https://doi.org/10.1197/jamia.M1056.
 
Strickland, Eliza. 2019. “IBM Watson, Heal Thyself: How IBM
Overpromised and Underdelivered on AI Health Care.” IEEE
Spectrum.
Topol, Eric J. 2019. 
“High-Performance Medicine: The Convergence
of Human and Artificial Intelligence.” Nature Medicine
25 (1): 44–56. 
https://doi.org/10.1038/s41591-018-0300-7.
 
Turing, A. M. 1950. 
“Computing Machinery and Intelligence.”
Mind 59 (236): 433–60. 
https://doi.org/10.1093/mind/LIX.236.433.
 
Wong, Andrew, Erkin Otles, John P. Donnelly, Andrew Krumm, Jeffrey
McCullough, Olivia DeTroyer-Cooley, Justin Pestrue, et al. 2021.
“External Validation of a Widely Implemented Proprietary Sepsis
Prediction Model in Hospitalized Patients.” JAMA Internal
Medicine 181 (8): 1065–70. 
https://doi.org/10.1001/jamainternmed.2021.2626.
 
Yu, Victor L., Bruce G. Buchanan, Edward H. Shortliffe, Sharon M.
Wraith, Randall Davis, A. Carlisle Scott, and Stanley N. Cohen. 1979.
“Antimicrobial Selection by a Computer: A Blinded Evaluation by
Infectious Disease Experts.” JAMA 242 (12): 1279–82. 
https://doi.org/10.1001/jama.1979.03300120033018.
 
Zech, John R., Marcus A. Badgeley, Manway Liu, Anthony B. Costa, Joseph
J. Titano, and Eric Karl Oermann. 2018. 
“Variable Generalization
Performance of a Deep Learning Model to Detect Pneumonia in Chest
Radiographs: A Cross-Sectional Study.” PLOS Medicine 15
(11): e1002683. 
https://doi.org/10.1371/journal.pmed.1002683.